
The Portable Common Runtime Approach to Interoperability

Mark Weiser, Alan Demers and Carl Hauser

Xerox PARC
3333 Coyote Hill Road

Palo Alto, California 94304*

Abstract: Operating system abstractions do not always
reach high enough for direct use by a language or
applications designer. The gap is filled by language-specific
runtime environments, which become more complex for
richer languages (CommonLisp needs more than C+ + ,
which needs more than C). But language-specific
environments inhibit integrated multi-lingual
programming, and also make porting hard (for instance,
because of operating system dependencies). To help solve
these problems, we have built the Portable Common
Runtime (PCR), a language-independent and operating-
system-independent base for modern languages. PCR
offers four interrelated facilities: storage management
(including universal garbage collection), symbo:l binding
(including static and dynamic linking and loading), threads
(lightweight processes), and low-level I/O (including
network sockets). PCR is “common” because these
facilities simultaneously support programs in several
languages. PCR supports C. Cedar, Scheme, and
CommonLisp intercalling and runs pre-existin,g C and
CommonLisp (Kyoto) binaries. PCR is “portable” because
it uses only a small set of operating system features. The
PCR source code is available for use by other researchers
and developers.

*email: weiser.pa@Xerox.com

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
Ql989 ACM 009191-338.3/89/0012/0114$1.50

1. Introduction

1.1 The Problem - interlanguage interoperability

Although there are many facets to interoperability, one
remains largely unassailed: closely coupled interoperation
between programs written in different languages. By
closely coupled we mean that an application as real-time or
sophisticated as a device driver or a database management
system might have different parts written in different
languages. The parts could share data structures, memory,
and threads of control. Interoperation without giving one
language a primary role is to be preferred: the choice of a
language should be determined by the semantic model
needed, not by the degree of support from the operating
environment.

The principal prerequisites to closely coupled
interoperation are the ability to share an address space, the
ability to bind symbolic names between programs written in
different languages, the ability to share l/O. and the ability
to share data representations between programs written in
different languages. In addition to these problems of
interlanguage interoperation, intralanguage interoperation
in the form of lightweight concurrent threads is an
important concept of modern programming languages and
this feature must be made interoperable as well. so that all
programs can properly respect each others’ critical sections.

1.2 The Portable Common Runtime solution

The Portable Common Runtime addresses the shared
address space, symbol binding, and lightweight threads
requirements for interoperability. The problem of shared
data representations is beyond the scope of PCR, although
certainly important for achieving much of the benefit of
interlanguage interoperability.

Ordinarily, the language implementor produces a language-
specific runtime layer directly on top of the operating

114

system. In this scenario, features such as garbage collection
must either be added at the operating system level or the
language-specific runtime level. If the latter approach is
chosen the feature becomes very difficult or impossible to
use interoperably. However, an approach relying on a new
operating system is a barrier to interoperability with
existing applications and the existing operating systems
they rely upon.

The PCR approach is to produce a common runtime layer
between the operating system and the language runtimes.
The PCR abstractions complement typical operating system
abstractions such as virtual memory, communications, and
file system. PCR allows exploration of the kind of features
future generations of operating systems will have in their
kernels to support interoperability.

Cedar c ---

PCR differs from language-specific runtimes both in the
sophistication of some of its features, and the paucity of
others. Compared with the C standard library, for instance,
it offers the new features of threads, garbage collection and
dynamic loading, but does not offer string functions or
sophisticated printing or input scanning. Our choice is to
focus deliberately on those features that language
implementations must share for closely coupled
interoperability. while avoiding other features in a runtime
library that are not so important to interoperation. We
assume that features we do not implement can continue to
be done on a language-dependent basis without seriously
reducing interoperation. For example, the string functions
of the C library are adequate for manipulating C strings in
PCR, while another library could be used for another
language’s character strings. This is not true for garbage
collection, say, or the process model for which sharing data
or critical sections requires a common abstraction.

PCR fails to solve the whole problem of language and
application interoperation in at least two ways. As
mentioned above, PCR daes not solve the interlanguage
data representation problem. Other attacks on
interoperation, such as remote procedure call and
Presentation Manager [Apik and Diehl 19883, do impose a
standard method of data exchange. Second, PCR says
nothing about a user interface. Again, other approaches.
like Open Look and Motif; address this [Hayes and Baran
19891.

For additional alternatives to our approach, see section 5 of
this paper on Related Work.

2. PCR Design Principles

The PCR design was constrained by the following
principles:

1. implement above existing operating systems.

2. support existing simple applications.
3. permit the use of existing compilers, libraries, and

binaries.
4. let sophisticated applications be written.

Implementing above the operating system means. in the
first place, avoiding changes to operating system kernels,
and the second place, not duplicating operating system
functions. Therefore, for instance, a PCR implementation
on Mach [Accetta et al. 19861 maps PCR threads into Mach
threads. However, implementing PCR well requires from
its base operating system certain functions not available
from every operating system: it requires the ability to share
memory and open files between operating system
processes; it requires the ability to protect pages of
memory, and to catch and restart from protection failures:
it requires a file system. These features are available more
and more. and so we traded off loss of portability to older
operating systems for much greater functionality.

Supporting existing simple applications means that. as we
add potentially interfering new features, older
programming stytes can mostly remain intact. For instance,
although we garbage collect storage allocated by C code, we
do not require that C programmers replace their ‘malloc’
and ‘free’ calls. PCR simply ignores the ‘free’s, and
invisibly collects ‘malloc’ed space. Binary files that can be
dynamically loaded in PCR can also be statically linked
using the vanilla Unix ‘Id’ command. PCR is not perfect in
this respect, as the details in following sections make clear,
but it achieves a useful compromise between backward
compatibility and new functionality.

By permitting the use of existing compilers, libraries, and
binaries, we help to enforce on ourselves our rule of
supporting existing simple applications. We co-exist with a
machine’s native stack and calling conventions, so compiler
back-ends do not have to change, and we accept standard

115

relocatable object file format, so precompile:d code
continues to work. For example, the complete SunView
window system library operates unrecompiled, dynamically
loaded and garbage collected in PCR. One thing that does
not work is dynamically loading binaries from which
relocation information has been removed.

By saying we want to permit sophisticated applications, we
mean applications most naturally expressed using PCR-
specific features. For instance, an application managing
many concurrent activities will use the threads facilities.
The language that has stretched our interfaces fart.hest has
been CommonLisp, because it already has notions of
dynamic loading and of garbage collection. We had to
make sure we offered facilities on top of which
CommonLisp language implementors could work. For
example, an implementation using tagged pointers must be
able to co-exist with our collector. In general, our solutions
were of two types: make the interfaces more general, and
provide for upcalls [Clark 19851 when there was no other
way.

3. Design and Implementation of PCR

3.1 Threads

3.1.1 Background

The PCR threads interface offers the usual semantics of
monitors, monitor locks, condition variables, fork/join,
aborting, etc. [Hoare 1974, Brinch-Hansen 19751. As
indicated above, we have worked to make the interface
general enough to be used cooperatively by many (different
languages. PCR threads meet the runtime requirements of
languages such as Cedar/Mesa [Swinehart et al. 19861,
Modula-3 [Cardelli et al. 19881, CommonLisp [Steele 19841,
and ARGUS [Liskov et al. 19871: and can easily simulate
other threads packages such as Cooper’s C-Threads for
Mach, Sun’s Iwp [Sun 1988a], Bershad’s [Bershad et al.
19881, etc. The following overview highlights noteworthy
features of our implementation.

Threads implementations fall into two categories: ,inside or
outside the OS kernel. Implementations inside th’e kernel,
such as Mach [Accetta et al. 19861 or V [Cheriton and
Zwaenepoel 19831, have explicit knowledge of multiple
threads per address space, and the OS scheduler treats such
threads separately. Implementations outside the kernel
generally use coroutines in a single heavyweight process.
Coroutine implementations can be faster at thread
switching, because they avoid any overhead associated with
entering and leaving the kernel (similar to the speedup
achieved by {$ynth&$ [Pu et al. 19881, although via a
different method), However, their reliance on only one
heavyweight process introduces two serious problems: first,
if that process ever blocks. all threads are blocked and
second, there is no opportunity to use a multiprocessor to
achieve true concurrent thread execution. Techniques for

avoiding blocking--use of the Unix non-blocking I/O
primitives, for example--can alleviate this problem, but they
cannot entirely eliminate it, since some kinds of blocking
(e.g. page faults) cannot be predicted or even detected
outside the kernel.

3.1.2 Implementation

Our approach to implementing PCR threads in an
operating system like Unix, which has no notion of a
lightweight process, is to have a small number of
heavyweight processes act as a pool of “virtual processors”
(“VPs”) to execute the many threads. All VPs share a
common address space. Each VP is treated by the PCR
scheduler exactly like a cpu in a shared-memory
multiprocessor system. This implementation avoids the
problems of coroutine threads implementations while not
suffering the cost of a kernel entry for every thread switch.

In the normal case of a thread blocking predictably (e.g. by
waiting on a monitor lock or condition) or being preempted
at a timeslice, scheduling a new thread under this scheme is
essentially a coroutine jump within a single VP. Non-
blocking I/O and other techniques are used to make most
instances of thread blocking predictable, and thus avoid
most instances of VP blocking. Occasionally, however, a
thread blocks unpredictably, say for a page fault or file
system I/O. In that case the VP running the thread blocks;
but the remaining VPs are still available for heavyweight
process scheduling by the OS, and continue to run other
threads. On a uniprocessor, assuming the number of
available VPs exceeds the number of unpredictably blocked
threads, the net effect is just to trade a heavyweight process
switch (between VPs) for a lightweight switch (between
threads in a single VP): some threads continue to make
progress at all times. On a multiprocessor, ready threads
execute concurrently (depending only on a reasonable base
kernel implementation) with no change to the PCR
implementation.

The PCR implementation relies on a relatively small
number of underlying kernel features, chief of which is the
ability to share memory among heavyweight processes.
Since this feature exists in OS/2, the Unix SVID, Mach,
SunOS. and many other modern operating systems, we
anticipate no serious portability problem. Other OS
features required by PCR are the ability for heavyweight
processes to interrupt one another and to catch interrupts,
and the ability to define a medium-grained interval timer
(our scheduler wakes up ten times a second for time-
slicing). Our implementation runs better if it can also
write-protect pages (used for stack red-zoning and parallel
garbage collection), catch and restart from protection
violations, and remap pages to different addresses.

3.1.3 Debugging

Debugging of threads is currently a bit difficult, and we are
working to improve it. At present, there are a few

116

interactive commands by which one can stop all VPs, run
on a single VP, freeze or thaw individual threads, or
examine an individual thread. Examining works like this:
before examining, a single-process debugger (say Unix dbx)
is pointed at a distinguished VP, and a breakpoint is set at a
well-known location. When the examine command is given
for a thread, the thread is scheduled on that VP. and forced
to execute through the breakpoint location. The specified
VP hits the breakpoint with the desired thread’s stack
appearing as the VP process stack.

Independently. we are developing an extensible, multi-
language debugger for PCR [Sturgis 19891. This debugger,
called Cirio, handles operations such as starting and
stopping threads and setting breakpoints in a uniform,
language-independent way. Each supported language
registers with Cirio a collection of objects that embody
language-specific features such as symbol table
interpretation, data type representation and stack frame
layout. A preliminary, cross-machine version of Cirio is
working for Cedar and C programs.

3.2 I/O

The I/O interface currently provided by PCR is a nearly-
exact emulation of the Unix I/O system calls. This is
certainly the least portable aspect of the PCR design, and
we plan eventually to replace it. However, developing the
ultimate general-purpose, powerful and fully portable I/O
interface will involve substantial research and effort: the
current design was simple to produce (we copied it) and has
enabled us to write PCR-based applications and validate
some implementation techniques.

One limitation of Unix (and some other systems as well) is
particularly troublesome when combined with the
implementation of threads described above: the maximum
number of open files that a single heavyweight process can
hold is much less than the total number of open files
supported by the system. In “normal” use of Unix, with
each heavyweight process running a single application, the
open file limit is large enough to be uninteresting. But we
want to implement network servers and other large systems
using PCR; it is important that the per-heavyweight-process
resource limitations of Unix not translate into system-wide
resource limitations for PCR.

To deal with this problem, our implementation on top of
Unix uses additional heavyweight processes as “I/O
processors”(“IOPs”), essentially to serve as caretakers for
file descriptors. It works as follows:

A file is opened by allocating a file descriptor slot in one of
the IOPs and sending a message to that IOP asking it to
open the tile. While the file remains open, its descriptor
remains in the IOP: the descriptor slots of the VPs are
treated as an LRU cache of copied descriptors. To perform
I/O on a descriptor, a thread first ensures that a copy of
that descriptor exists in the VP’s descriptor cache. If

necessary, the least recently used descriptor in the cache is
replaced by a copy of the desired descriptor, which is
transferred from the corresponding IOP using Unix-
domain IPC or using stream operations on a specially
written pseudo-device driver. Currently, all VPs maintain
identical file descriptor caches, though this constraint could
be relaxed at the cost of some complexity in the
implementation. The thread then attempts a non-blocking
I/O operation on the descriptor. tf the operation fails
because it would block. the thread sends a message to the
IOP requesting notification when the descriptor becomes
ready. It then waits on a condition variable, allowing the
VP to schedule a different thread without blocking.
Eventually the descriptor becomes ready and the IOP
notifies the waiting thread, which wakes up and retries the
I/O operation. This scheme works well under the obvious
condition that the working set of descriptors fits in the VP’s
descriptor cache.

User code sees none of this, of course. PCR imposes a layer
of indirection in the file descriptors, and mimics all the
Unix I/O system call layer (read, write, open, . ..). It does
the same for the SunOS socket-oriented calls and the
System V stream-oriented calls.

This I/O design enables us to support applications
requiring more open files than allowed in a single Unix
heavyweight process, at the cost of occasionally having to
fault copies of descriptors into the VP descriptor caches.

3.3 Storage Management

3.3.1 Background

Storage management for many modern languages requires
garbage collection. If programs are to make the most of a
shared address space, it must be possible for them to share
allocated data structures. This implies that storage
allocation and garbage collection must be part of the
common runtime rather than the individual language
runtimes. An additional benefit of including storage
management with garbage collection in the common
runtime is that programmers in languages like C, which do
not require garbage collection in their runtime, benefit
from its inclusion.

In order to work for languages that cannot guarantee
pointer locations, the Portable Common Runtime uses a
conservative collection scheme as implemented by Boehm
[Boehm and Weiser 19881. Two different storage allocation
systems have been implemented for PCR. The first is a
direct adaptation of Boehm’s Russell collector, with
additions for typed objects and finalization. The second is a
new implementation that is real-time, parallel, generational
but noncopying, and handles pointers to the interior of
objects. Because of its unique features, this second
implementation is described in more detail in a separate
paper [Demers et al. 19891. Here we focus on the highlights
common to both collectors, and in particular on the

7

mechanisms common to both for finalizing objects in a
conservative world. and for pointer-finding upcalls.

Garbage collectors can be either reference counting or
mark-and-sweep. Reference counting collectors impose
overhead on each pointer manipulation: mark-and-sweep
collectors defer the overhead to garbage collection time.
Conservative collectors [Bartlett 19881 are a new type of
mark-and-sweep collector. The advantage of conservative
collectors is that they require no support from language
implementations. Even without exact knowledge of which
words in memory are pointers a conservative collector will
never identify a reachable object as garbage; however, it
may err in the other direction.

As Bartlett and Boehm have shown, conservative or
partially conservative collectors work for many languages.
For PCR they have been extended in two ways: finalization
and pointer finding upcalls.

3.3.2 Finalization

Finalization is the method by which an application can
request that it get a chance to look at an object just before it
is freed. The application can abort the free at that point, or
let it continue. In PCR. finalization works as follows:
finalization may be requested for any object by passing it to
the PCR routine XR-RegisterForFinalization.
XR-RegisterForFinalization returns a handle to
the object. The handle may be turned into a true pointer to
the object at any time, but is not a pointer for purposes of
collection (i.e. an object can be finalized while handles for it
still exist).

During each collection. after the mark phase but before
sweeping, the PCR collector executes the algorithm below:

for each unmarked finalizable object o
for each pointer p in o

mark p?, and mark all p?‘s descendants
for each finalizable object, o, still unmarked

queue o for finalization by its owning application

This algorithm has the difficulty of never finalizing circular
lists. The circularity of such lists must be broken by using a
handle produced by XR-RegisterForFinalization
for one of the links, rather than an actual pointer. The
handle isn’t treated as a pointer by the collector, so
finalization still occurs.

An alternative implementation of finalization, used in the
Cedar reference counted storage system[Rovner 19851, is a
dangerous technique called package ref counts. It involves
artificially lowering the reference count stored in each
finalizable object. and having no way to tell a known from
an unknown reference. We believe that our method, using
explicit handles that can be turned into pointers, is safer
and less error prone.

Finalization is tricky, however it is done, but it is not

frequently programmed directly. For instance, in the two
million lines of Cedar code in use at PARC, only twelve
calls register objects for finalization. Requiring careful
programming in the use of this feature is therefore
reasonable. However, doing without finalization is not
possible: the twelve kinds of finalizable objects in Cedar
include stream and network I/O objects, so nearly all
applications indirectly use finalization.

3.3.3 Improving performance of the conservative collector

The PCR collector is conservative and so works even for
languages that permit any word in memory to contain a
pointer (such as C). However, for some languages (such as
Cedar and Lisp) it is possible to tell exactly which bit
patterns in memory are pointers. For these languages,
collector speed can be improved because only words
containing pointers need to be examined. Collection
precision may also be improved because false pointers will
not unnecessarily hold storage under the conservative
assumption, although for at least one test this effect was
small [Boehm and Weiser 19881. Another reason for non-
conservative pointer-finding is that some language
implmentations use non-standard pointer representations to
improve non-pointer performance (e.g. tagged pointers in
some Lisp implementations). For all these reasons, the
PCR design incorporates the notion of a pointer-finding
upcall. The pointer-finding upcall works as follows:

Each object is typed by the kind of pointer-finding upcall
needed to deduce its pointers. There can be as many
different upcalls as needed to find pointers in objects: one
for tagged pointers, one finding pointers according to
datatype-dependent pointer maps, another for entirely
conservative pointer-finding, etc. New upcalls are
introduced by registering them with the collector and
receiving in return an upcall type code. The upcall type
code is an optional additionat parameter to object creation
and is permanently associated with the created object.
During the mark phase of collection, the collector uses the
upcall associated with each object to find the pointers it
contains. In the absence of an upcall, fully conservative
pointer-finding is used.

Our largest PCR applications do not use the upcall at
all--they run completely conservative, even though in the
case of Cedar we theoretically have enough type
information to be more precise. Our experience with the
upcall is in a special version of PCR that uses the upcall for
compatibility with a CommonLisp implementation that
uses tagged pointers. The cost of the upcall is about a
microsecond per object on a 16 Mhz SPARC (sun-4/260).
This is roughly twice the cost of conservatively examining a
word in the object to see if it is a pointer (which requires at
least a range check to see if it could be a value in the heap).
Thus the upcall performance is better than the conservative
performance if it can reject non-pointers twice as fast as the
conservative check, with at least a constant improvement of

118

two pointer checks. For instance, suppose a rate of pointers
in objects of 25%. Then an upcall that positively identified
pointers in objects, and spent an average of three
conservative checktimes per pointer per object doing so,
would on average have better performance for all objects of
size greater than 5 words (cost of 2 word-times overhead for
the upcall, and cost of 3.75 word-times for the 1.25 expected
pointers per 5 word-object).

3.4 Symbol Binding and Incremental Loading

Finally, we come to the part of the PCR that does
incremental linking and loading, maintaining the symbol
tables used for this purpose and for debugging. This part of
the PCR consists of two components. The first internalizes
object code from external files and the second does
symbolic name binding on the internalized code.

Internalizing object code is, of course, dependent on the
particular file formats used for object code. The
incremental loader reads the code and data portions of the
object file into dynamically allocated storage. It creates an
internal symbol table corresponding to the symbol table in
the file. It also relocates the loaded code and data and
records the location of the code and data in a file for later
use by the debugger. This file is used to generate a
synthetic a.out file containing symbols for all the statically
and dynamically loaded code. Debuggers such as dbx and
gdb can then be used on dynamically loaded code by using
the a.out file as their symbol source.

The second component manages the internalized symbol
tables. It is responsible for attempting to resolve undefined
symbols in each incrementally loaded file against defining
occurrences in previously loaded files and in libraries. Of
course, finding a defining occurrence in a library causes the
appropriate library component to itself be incrementally
loaded.

Each incrementally loaded module is checked for two
special names: XR,install and XR,run. If present,
these are called in that order. X R-i n s t a 11 performs any
language-dependent symbol binding (Cedar and Lisp use it,
for instance). XR,run is the entry point to actually start
executing the loaded code.

The incremental loading code is fully compatible with
existing Unix programs and libraries. Anything that can be
dynamically loaded can also be statically bound into an
instance of PCR. This enables us to debug PCR-based
applications using dynamic loading, and then, using those
same modules, easily construct a single executable program
indistinguishable from any other executable binary on the
machine. We use this, for instance, to make some of our
common tools, like the Cedar compiler and Postscript and
Interpress decomposers, look like ordinary Unix programs.

4. Performance

Our early experience with PCR as the foundation of our
Cedar programming environment suggested that its
performance was not an issue for that use. To quantify this
feeling we undertook some measurements of PCR
performance.

This section is broken into 4 parts corresponding to overall
performance as a user at the keyboard might see it,
followed by sections detailing the performance of the PCR
components. Times were measured on a Sun-41260
running SunOS 4.0.1 with the SunView window system up
but idle, and no other activity besides the benchmark.

4.1 Overall System Performance

In this section, all times are averages over several runs of
combined system and user time as measured by the SunOS
getrusage call, reported either directly (for PCR), or from
the the cshell ‘time’ command.

Running a tight loop counting to 30 million takes 31.3
seconds in raw Unix, 31.7 seconds in PCR. This 1%
overhead is accounted for by PCR’s internal 20-times-per-
second clock interrupts, and its lo-times-per-second
preemptive rescheduler. This measurement shows the
penalty due to PCR for compute-bound jobs.

As another measurement of PCR overhead, we ran the
same tight counting loop many times at once, comparing
multiprogramming using Unix processes with using PCR
threads. For this measurement the number of times
through the loop was in each case divided by the number of
simultaneous executions, so an ideal completion time would
have been the same as for the single tight counting loop,
above. The details are in Table 1. This implementation of
Unix seems to have a process switch overhead that goes up
by 3% from 16 to 32 processes, and again from 32 to 64
processes. These measurements show the benefit of
lightweight threads over Unix processes for supporting
many compute bound activities simultaneously.

number of processes
1 2 16 32 64

UNIX, sets 31.3 32.8 34.7 35.5 36.8
PCR, sets 31.7 33.2 33.9 34.0 34.0

Table 1. CPU-bound multiprocess times.

Finally, as a realistic example, native unix troff takes 27.7
seconds to process the Unix C-shell (CSH.l) manual entry.
With troff dynamically loaded and linked into PCR, the
same computation takes 28.0 seconds, exclusive of link and
load time. This is the minimum overhead of about 1%.

119

4.2 Threads

4.2.1 ThreadSwitch Time

Currently, the cost of a thread switch is about 77 usec
(measured by ITIMER- PROF option of the getitimer
call). This includes a 35 usec overhead of a trap to the
SunOS kernel to save the register-window. It also includes
overhead for the debugging features discussed in Section
3.1.3: the ability to freeze and thaw individual threads, to
examine blocked or faulted threads, to switch dynamically
between single and multiple virtual processors, etc. Some
of these features will be greatly simplified or eliminated
when the Cirio debugger is completed, and thread switch
times should improve as a result, but even the current value
would be acceptable. (There is an additional, hidden cost
to thread switching, not reflected in our measurements:
when a thread is dispatched, its register file is initially
empty, so the thread incurs the overhead of “faulting-in”
registers as necessary.)

4.2.2 Monitor Entry and Exit Times

An important performance parameter is the cost of
acquiring and releasing a monitor lock in the (usual) case
that there is no contention for the lock. In PCR thle cost of
calling a null ENTRY procedure (i.e., one that does nothing
but acquire and then release a monitor lock) is ,4.2 usec.
Currently both locking and unlocking are done by
procedure call, so this cost could be improved shghtly by
in-line expansion. Additional improvement could be
achieved, at some expense in debuggability, by eliminating
a field containing the identity of the thread holding a lock.

4.3 I/O

A program that opens a tile, and then does 100,000
iterations of lseeking to the beginning and reading 1024
bytes takes 23.3 seconds in raw Unix, and 31.3 seconds in
PCR. This is an overhead of about 40 usec for each of the
lseek and read calls. Some of this time is in entering and
leaving monitors (two per call), and the rest is the (overhead
of checking for the special cases for such things as the read
blocking or the descriptor not being in the cache. A better
tuning for common cases would make a large imprlovement.
On the other hand, 40 usecs overhead for an I/O that will
take at least a few milliseconds seems acceptable.

We do not yet have applications large enough to let us
make realistic measurements of the PCR file descriptor
cache hit ratio. Using a synthetic benchmark, we have
measured the cost of a descriptor cache miss to be about 4.6
msec. This figure includes system and user times, both on
the virtual processor on which the fault occurred alnd on the
I/O processor owning the desired descriptor.

4.4 Storage management

Our most widely used PCR implementation today (March
1989) uses a collector based on Boehm’s [Boehm and

Weiser 19881, modified to keep a type word before the first
word of the object. Its collection speed is about a half
second per megabyte of active object space (assuming no
paging). Our newer collector ought to run at a similar
speed, but on only lOOkbytes at a time and touching many
fewer pages [Demers et al 19891.

4.5 Symbol binding and dynamic loading

Dynamically loading an object tile into PCR is somewhat
faster than processing the file using the Unix Id command.
For example, the troff program discussed above is loaded
into PCR in 1.3 seconds compared with the 1.7 seconds Id
requires to process it. The reason seems to be that Id has
many general cases to handle, and must also build an
output file, while PCR loads and relocates in place. Of
course, the cost of ld’ing is amortized over all the executions
of the resulting output file, while the cost of dynamic
loading can only be amortized over executions taking place
within a single instance of PCR.

5. Related Work

Our work builds on previous research in light-weight
processes, garbage collection, library management, etc., and
references to these are in the main body of the text, In this
section we collect the discussion about alternative
approaches to language interoperability.

One current approach to language interoperability,
exemplified in Mercury [Liskov et al. 19881 and HRPC
[Bershad et al. 19871, uses client-server models of
interoperation where remote procedure call connects, and
insulates, applications in different languages. The problem
here is the lack of tight coupling. Remote procedure call,
even when local but across address spaces, is usually much
more expensive than calls within the same address space.
When the language partitioning and the client/server
partitioning match, RPC does well. When they do not
match, they force the application writer to introduce
artificial distinctions.

Another approach to language interoperability uses a
common base language to which other languages must
conform. The foreign function call interfaces in Common
Lisp [Sun 1988b. Franz 19881, are examples of this
approach. The problem here is that the privileged language
enjoys easier debugging, better access to services, and more
attention from developers. The choice of language in which
to write an application becomes distorted by issues beyond
appropriate language semantics, and the languages
interoperate asymmetrically.

A third approach to language interoperability is to
standardize on a common intermediate form. This is a
variation on the privileged language approach, permitting
different languages to interoperate as long as they use a
common compiler back-end. In spite of several attempts in

120

18(9). September 1988. pp. 807-820.

[Brinch-Hansen 19751
Brinch-Hansen. P.. “The Programming Language Concurrent Pascal”.
IEEE Transaciions on SoJware EngineeringSE-I. 2. June, t975. pp.
199-207.

[Cardelli et al. 19883
Cardelli, L., Donahue, 1.. Classman. L.. Jordan, M., Kalsow. B.. and
Nelson. G.. “Modula-3 Report”. DEC Systems Research Center.
August, 1988.

[Cheriton and Zwaenepoel19831
Cheriton. D. and Zwaenepoel, W. “The Distributed V Kernel and its
Performance for Diskless Workstations”. Proceedings ofthe Ninth
ACM Symposium on Operating Systems Principles, Bretton Woods.
NH, October. 1983, pp. 128-140.

[Clark 19851
Clark. D. “The Structuring of Systems Using Upcalls”. Proceedings of
the Tenth ACM Symposium on Operating Systems Principles. Orcas
Island. WA, December. 1985, pp. 171-180.

[Demen et al. 1989)
Demers. A.. We&r, M., Hayes. B.. Boehm. H.. Bobrow. D.. and
Shenker, S. “Combining Generational and Conservative Garbage
Collection”. submitted to the ACM Conference on Principles of
Programming Languages, January 1990.

[Franz 1988)
Franz Inc.. “Foreign Functions”. Allegro Common Lisp User Guide.
Release 2.2. Section 10. January 1988.

[Gabriel 19891
Gabriel, D.. Ed. “Draft Report on Requirements for a Common
Prototyping System”. SIGPLAN Notices, V. 24. No. 3, March 1989.
pp. 93-166.

[Goldberg and Robson 19831
Goldberg. A. and Robson. D.. Smalltalk-80: the language and its
implementation. Addison-Wesley, 1983.

[Hayes and Baran 19891
Hayes. F. and Baran N., “A Guide to GUIs”. Byle 14. 7. July, 1989.
pp. 250-257.

[Hoare 19741
Hoare, C. A. R., “Monitors: An Operating System Structuring
Concept”. CACM 17, IO. October. 1974, pp. 549-557.

[Liskov et al. 19871
Liskov, 8.. Curtis. D., Johnson, P. and Scheitler, R. “The
Implementation of Argus”. Proceedings ofthe Eleventh ACM
Symposium on Operating Systems Principles. Austin. TX. November.
1987. pp. 111-122.

[Liskov et al. 19881
Liskov, B., Bloom, T.. Gifford, D., Scheitler, R.. and Weihl. W.,
“Communication in the Mercury System”. Proc. ofthe 21sr Annual
Hawaii fnrl. ConjI on System Sciences. Kailua-Kona. HI. January 1988.
pp. 178-187.

[Pu et al. 19881
Pu. C. and Massalin, H. and loannidis. J., “The {Synthesis} Kernel”.
Computing Systems, Vol l(1). Winter 1988, pp. 11-32.

[Rovner 1985)
Rovner, P. “On Adding Garbage Collection and Runtime Types to a
Strongly-Typed. Statically Checked, Concurrent Language”. Xerox
Palo Alto Research Center Technical Report CSL-84-7. July 1985.

[Steele 19841
Steele. G.. Common LISP: The Language, Digital Press, 1984.

[Sturgis 19891
Sturgis, H.. “Cirio: A Multiple Language Symbolic Debugger for the
Portable Common Runtime”, Xerox PARC, in preparation.

[Sun L988a]
Sun Microsystems, “Lightweight Process Library”. SunO!i Reference
Manua[. Sun Release4.0.1988, section 3L.

[Sun 1988b]
Sun Microsystems. “Working Beyond the Lisp Environment”, Sun
Common Lisp 3.0 Advanced User’s Guide, chapter 5. part no.
800-3049-10. August 1988.

[Swinehart et al. 1986)
Swinehart. D.. Zellweger, P.. Beach, R.. Hagmann. R.. “A Structural

View of the Cedar Programming Environment”. TOPLAS 8.4.
October, 1986.

[Tanenbaum et al. 19833

Tanenbaum. AS.. van Staveren, H.. Keizer, E. G.. Stevenson, J. W..
“A Practical Tool Kit for Making Portable Compilers”,
Communicationsofthe ACM. Vol. 26(9). September 1983. pp.
654-660.

[U.S. DOD 19831
U. S. Department of Defense, Reference Manualfor the Ada
Programming Language. ANSI/MIL-STD 1815 A, January. 1983.

[Xerox 19851
Xerox Corporation. Interlisp-D Reference Manual. October. 1985.

122

